Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
It’s seen that the given curves are equation of two circles.
2x = y2 ….. (1) and
2xy = k ….. (2)
We know that, two circles intersect orthogonally if the angle between the tangents drawn to the two circles at the point of their intersection is 90o.
Now, differentiating equations (1) and (2) w.r.t. t, we get
$2.1=2 y \cdot \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{y} \Rightarrow m_{1}=\frac{1}{y}$
$\left(m_{1}=\right.$ slope of the tangent $)$
$\Rightarrow \quad 2 x y=k$
$\Rightarrow 2\left[x \cdot \frac{d y}{d x}+y \cdot 1\right]=0$
$\therefore$ $\frac{d y}{d x}=-\frac{y}{x} \Rightarrow m_{2}=-\frac{y}{x}$
$\left[m_{2}=\right.$ slope of the other tangent $]$
If the two tangents are perpendicular to each other,
then $\quad m_{1} \times m_{2}=-1$
$\Rightarrow \quad \frac{1}{y} \times\left(-\frac{y}{x}\right)=-1 \Rightarrow \frac{1}{x}=1 \quad \Rightarrow \quad x=1$
$2.1=2 y \cdot \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{y} \Rightarrow m_{1}=\frac{1}{y}$
$\left(m_{1}=\right.$ slope of the tangent)
$\Rightarrow$ $2 x y=k$
$\Rightarrow 2\left[x \cdot \frac{d y}{d x}+y \cdot 1\right]=0$
$\therefore \quad \frac{d y}{d x}=-\frac{y}{x} \Rightarrow m_{2}=-\frac{y}{x}$
$\left[m_{2}=\right.$ slope of the other tangent]
If the two tangents are perpendicular to each other,
then $\quad m_{1} \times m_{2}=-1$
$\Rightarrow \quad \frac{1}{y} \times\left(-\frac{y}{x}\right)=-1 \Rightarrow \frac{1}{x}=1 \Rightarrow x=1$
Now, solving equations (1) and (2), we have
y = k/2x [From (2)]
Putting the value of y in equation (1),
2x = (k/2x)2 ⇒ 2x = k2/4x2
8x3 = k2
8(1)3 = k2
k2 = 8
Therefore, the required condition is k2 = 8.