Find the complex number $z$ for which $|z|=z+1+2 i$
Given: $|z|=z+1+2 i$
Consider,
$|z|=(z+1)+2 i$
Squaring both the sides, we get
$|z|^{2}=[(z+1)+(2 i)]^{2}$
$\Rightarrow|z|^{2}=|z+1|^{2}+4 i^{2}+2(2 i)(z+1)$
$\Rightarrow|z|^{2}=|z|^{2}+1+2 z+4(-1)+4 i(z+1)$
$\Rightarrow 0=1+2 z-4+4 i(z+1)$
$\Rightarrow 2 z-3+4 i(z+1)=0$
Let $z=x+i y$
$\Rightarrow 2(x+i y)-3+4 i(x+i y+1)=0$
$\Rightarrow 2 x+2 i y-3+4 i x+4 i^{2} y+4 i=0$
$\Rightarrow 2 x+2 i y-3+4 i x+4(-1) y+4 i=0$
$\Rightarrow 2 x-3-4 y+i(4 x+2 y+4)=0$
Comparing the real part, we get
$2 x-3-4 y=0$
$\Rightarrow 2 x-4 y=3 \ldots(i)$
Comparing the imaginary part, we get
$4 x+2 y+4=0$
$\Rightarrow 2 x+y+2=0$
$\Rightarrow 2 x+y=-2 \ldots$ (ii)
Subtracting eq. (ii) from (i), we get
$2 x-4 y-(2 x+y)=3-(-2)$
$\Rightarrow 2 x-4 y-2 x-y=3+2$
$\Rightarrow-5 y=5$
$\Rightarrow y=-1$
Putting the value of $y=-1$ in eq. (i), we get
$2 x-4(-1)=3$
$\Rightarrow 2 x+4=3$
$\Rightarrow 2 x=3-4$
$\Rightarrow 2 x=-1$
$\Rightarrow x=-\frac{1}{2}$
Hence, the value of $z=x+i y$
$=-\frac{1}{2}+i(-1)$
$z=-\frac{1}{2}-i$