Find the complex number satisfying the equation z + √2 |(z + 1)| + i = 0.
According to the question,
We have,
z + √2 |(z + 1)| + i = 0 … (1)
Substituting z = x + iy, we get
⇒ x + iy + √2 |x + iy + 1| + i = 0
$\Rightarrow \mathrm{x}+\mathrm{i}(1+\mathrm{y})+\sqrt{2}\left[\sqrt{(\mathrm{x}+1)^{2}+\mathrm{y}^{2}}\right]=0$
$\Rightarrow \mathrm{x}+\mathrm{i}(1+\mathrm{y})+\sqrt{2} \sqrt{\left(\mathrm{x}^{2}+2 \mathrm{x}+1+\mathrm{y}^{2}\right)}=0$
Comparing real and imaginary parts to zero, we get
$\Rightarrow x+\sqrt{2} \sqrt{x^{2}+2 x+1+y^{2}}=0$.......(2)
And,
$\mathrm{y}+1=0$
$\Rightarrow \mathrm{y}=-1$
Substituting $y=-1$ into equation (2), we get
$\Rightarrow x+\sqrt{2} \sqrt{x^{2}+2 x+1+1}=0$
$\Rightarrow \sqrt{2} \sqrt{x^{2}+2 x+2}=-x$
⇒ 2x2 + 4x + 4 = x2
⇒ x2 + 4x + 4 = 0
⇒ (x + 2)2 = 0
⇒ x = -2
Hence, z = x + iy
= – 2 – i