Find the areas of both the segments of a circle of radius 42 cm with central angle 120°.
Area of the minor sector $=\frac{120}{360} \times \pi \times 42 \times 42$
$=\frac{1}{3} \times \pi \times 42 \times 42$
$=\pi \times 14 \times 42$
$=1848 \mathrm{~cm}^{2}$
Area of the triangle $=\frac{1}{2} R^{2} \sin \theta$
Here, R is the measure of the equal sides of the isosceles triangle and θ is the angle enclosed by the equal sides.
Thus, we have:
$\frac{1}{2} \times 42 \times 42 \times \sin \left(120^{\circ}\right)$
$=762.93 \mathrm{~cm}^{2}$
Area of the minor segment = Area of the sector - Area of the triangle
$=1848-762.93=1085.07 \mathrm{~cm}^{2}$
Area of the major segment $=$ Area of the circle $-$ Area of the minor segment
$=(\pi \times 42 \times 42)-1085.07$
$=5544-1085.07$
$=4458.93 \mathrm{~cm}^{2}$