Find the area of the triangle whose sides are 42 cm, 34 cm and 20 cm in length. Hence, find the height corresponding to the longest side.
Let :
$a=42 \mathrm{~cm}, b=34 \mathrm{~cm}$ and $c=20 \mathrm{~cm}$
$\therefore s=\frac{a+b+c}{2}=\frac{42+34+20}{2}=48 \mathrm{~cm}$
By Heron's formula, we have :
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{48(48-42)(48-34)(48-20)}$
$=\sqrt{48 \times 6 \times 14 \times 28}$
$=\sqrt{4 \times 2 \times 6 \times 6 \times 7 \times 2 \times 7 \times 4}$
$=4 \times 2 \times 6 \times 7$
$=336 \mathrm{~cm}^{2}$
We know that the longest side is 42 cm.
Thus, we can find out the height of the triangle corresponding to 42 cm.
We have:
Area of triangle $=336 \mathrm{~cm}^{2}$
$\Rightarrow \frac{1}{2} \times$ Base $\times$ Height $=336$
$\Rightarrow$ Height $=\frac{336 \times 2}{42}=16 \mathrm{~cm}$