Find the area of the triangle whose sides are 42 cm, 34 cm and 20 cm in length. Find the height corresponding to the longest side.
Let the sides of the triangle be a = 20 cm, b = 34 cm and c = 42 cm.
Let s be the semi-perimeter of the triangle.
$s=\frac{1}{2}(a+b+c)$
$s=\frac{1}{2}(20+34+42)$
$s=48 \mathrm{~cm}$
Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$\Rightarrow \sqrt{48(48-20)(48-34)(48-42)}$
$\Rightarrow \sqrt{48 \times 28 \times 14 \times 6}$
$\Rightarrow \sqrt{112896}$
$\Rightarrow 336 \mathrm{~cm}^{2}$
Length of the longest side is 42 cm.
Area of a triangle $=\frac{1}{2} \times b \times h$
$\Rightarrow 336=\frac{1}{2} \times 42 \times h$
$\Rightarrow 672=42 h$
$\Rightarrow \frac{672}{42}=h$
$\Rightarrow h=16 \mathrm{~cm}$
The height corresponding to the longest side is 16 cm.