Find the area of the triangle, the equations of whose sides are y = x, y = 2x and y – 3x = 4.
The given equations are
$y=x \ldots$ (i)
$y=2 x \ldots$ (ii)
and $y-3 x=4 \ldots$ (iii)
Let eq. (i), (ii) and (iii) represents the sides $A B, B C$ and $A C$ respectively of $\triangle A B C$
From eq. (i) and (ii), we get $x=0$ and $y=0$
Thus, $A B$ and $B C$ intersect at $(0,0)$
Solving eq. (ii) and (iii), we get
$\mathrm{y}=2 \mathrm{x} \ldots$ (ii)
and $y-3 x=4 \ldots$ (iii)
Putting the value of y = 2x in eq. (iii), we get
$2 x-3 x=4$
$\Rightarrow-x=4$
$\Rightarrow x=-4$
Putting the value of x = -4 in eq. (ii), we get
$y=2(-4)$
$\Rightarrow y=-8$
Thus, $B C$ and $A C$ intersect at $(-4,-8)$
Now, Solving eq. (iii) and (i), we get
$y-3 x=4 \ldots$ (iii)
and $y=x \ldots$ (i)
Putting the value of y = x in eq. (iii), we get
$x-3 x=4$
$\Rightarrow-2 x=4$
$\Rightarrow x=-2$
Putting the value of x = -2 in eq. (i), we get
$y=-2$
Thus, $A C$ and $A B$ intersect at $(-2,-2)$
So, vertices of triangle $\mathrm{ABC}$ are: $(0,0),(-4,-8)$ and $(-2,-2)$
$\therefore$ Area of $\Delta \mathrm{ABC}=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ -2 & -2 & 1 \\ -4 & -8 & 1\end{array}\right|$
$=\frac{1}{2}[0-0+1\{(-2)(-8)-(-2)(-4)\}]$
$=\frac{1}{2}[1\{16-8\}]$
$=\frac{1}{2}[8]$
$=4 \mathrm{sq} .$ units