Find the area of the triangle formed by the lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus rectum.
The given parabola is $x^{2}=12 y$.
On comparing this equation with $x^{2}=4 a y$, we obtain $4 a=12 \Rightarrow a=3$
$\therefore$ The coordinates of foci are $S(0, a)=S(0,3)$
Let AB be the latus rectum of the given parabola.
The given parabola can be roughly drawn as
At $y=3, x^{2}=12(3) \Rightarrow x^{2}=36 \Rightarrow x=\pm 6$
$\therefore$ The coordinates of $A$ are $(-6,3)$, while the coordinates of $B$ are $(6,3)$.
Therefore, the vertices of $\triangle O A B$ are $O(0,0), A(-6,3)$, and $B(6,3)$.
Area of $\triangle \mathrm{OAB}=\frac{1}{2}|0(3-3)+(-6)(3-0)+6(0-3)|$ unit $^{2}$
$=\frac{1}{2}|(-6)(3)+6(-3)|$ unit $^{2}$
$=\frac{1}{2}|-18-18|$ unit $^{2}$
$=\frac{1}{2}|-36|$ unit $^{2}$
$=\frac{1}{2} \times 36$ unit $^{2}$
$=18$ unit $^{2}$
Thus, the required area of the triangle is 18 unit $^{2}$.