Find the area of the quadrilateral whose vertices taken in order are

Question.

Find the area of the quadrilateral whose vertices taken in order are (–4, –2), (–3, –5), (3, –2) and (2, 3).


Solution:

Join A and C. The given points are

$\mathrm{A}(-4,-2), \mathrm{B}(-3,-5), \mathrm{C}(3,-2)$ and $\mathrm{D}(2,3)$

Find the area of the quadrilateral whose vertices taken in order are

Area of $\triangle \mathrm{ABC}$

$=\frac{\mathbf{1}}{\mathbf{2}}[(-4)(-5+2)-3(-2+2)+3(-2+5)]$

$=\frac{\mathbf{1}}{\mathbf{2}}[12+0+9]=\frac{\mathbf{2 1}}{\mathbf{2}}=10.5$ sq. units

Area of $\Delta \mathrm{ACD}$

$=\frac{1}{2}[(-4)(-2-3)+3(3+2)+2(-2+2)]$

$=\frac{\mathbf{1}}{\mathbf{2}}\left[20+15 \mid=\frac{\mathbf{3 5}}{\mathbf{2}}=17.5\right.$ sq. units.

Area of quadrilateral ABCD

$=\operatorname{ar}(\Delta \mathrm{ABC})+\operatorname{ar}(\Delta \mathrm{ACD})$

$=(10.5+17.5) \mathrm{sq} .$ units $=28 \mathrm{sq} .$ units

Leave a comment