Find the area of the quadrilateral ABCD in which AD = 24 cm, ∠BAD = 90° and BCD forms an equilateral triangle whose each side is equal to 26 cm. Also find the perimeter of the quadrilateral. Take $\sqrt{3}=1.73$
Area of $\Delta B D C=\frac{\sqrt{3}}{4} a^{2}$
$=\frac{\sqrt{3}}{4} \times 26^{2}$
$=\frac{1.73}{4} \times 676$
$=292.37 \mathrm{~cm}^{2}$
By using Pythagoras' theorem in the right-angled triangle $\triangle D A B$, we get:
$A D^{2}+A B^{2}=B D^{2}$
$\Rightarrow 24^{2}+A B^{2}=26^{2}$
$\Rightarrow A B^{2}=26^{2}-24^{2}$
$\Rightarrow A B^{2}=676-576$
$\Rightarrow A B^{2}=100$
$\Rightarrow A B=10 \mathrm{~cm}$
Area of $\Delta A B D=\frac{1}{2} \times b \times h$
$=\frac{1}{2} \times 10 \times 24$
$=120 \mathrm{~cm}^{2}$
Area of the quadrilateral $=$ Area of $\triangle B C D+$ Area of $\triangle A B D$
$=292.37+120$
$=412.37 \mathrm{~cm}^{2}$
Perimeter of the quadrilateral = AB + BC + CD + AD
= 24 + 10 + 26 + 26
= 86 cm