Question:
Find the area of the quadrilateral ABCD in which AB = 42 cm, BC = 21 cm, CD = 29 cm, DA = 34 cm and diagonal BD = 20 cm.
Solution:
Area of $\triangle A B D=\sqrt{s(s-a)(s-b)(s-c)}$
$s=\frac{1}{2}(a+b+c)$
$s=\frac{42+20+34}{2}$
$s=48 \mathrm{~cm}$
Area of $\triangle A B D=\sqrt{48(48-42)(48-20)(48-34)}$
$=\sqrt{48 \times 6 \times 28 \times 14}$
$=\sqrt{112896}$
$=336 \mathrm{~cm}^{2}$
Area of $\triangle B D C=\sqrt{s(s-a)(s-b)(s-c)}$
$s=\frac{1}{2}(a+b+c)$
$s=\frac{21+20+29}{2}$
$s=35 \mathrm{~cm}$
Area of $\Delta B D C=\sqrt{35(35-29)(35-20)(35-21)}$
$=\sqrt{35 \times 6 \times 15 \times 14}$
$=\sqrt{44100}$
$=210 \mathrm{~cm}^{2}$
$\therefore$ Area of quadrilateral $A B C D=$ Area of $\triangle A B D+$ Area of $\triangle B D C$
$=336+210$
$=546 \mathrm{~cm}^{2}$