Find the area of quadrilateral ABCD in which AB = 42 cm, BC = 21 cm, CD = 29 cm, DA = 34 cm and the diagonal BD = 20 cm.
Given
AB = 42 cm, BC = 21 cm, CD = 29 cm, DA = 34 cm, and the diagonal
BD = 20 cm.
Now, for the area of triangle ABD
Perimeter of triangle ABD 2s = AB + BD + DA
2s = 34 cm + 42 cm + 20 cm
s = 48 cm
By using Heron’s Formula,
Area of the triangle $\mathrm{ABD}=\sqrt{\mathrm{s} \times(\mathrm{s}-\mathrm{a}) \times(\mathrm{s}-\mathrm{b}) \times(\mathrm{s}-\mathrm{c})}$
$=\sqrt{48 \times(48-42) \times(48-20) \times(48-34)}$
$=336 \mathrm{~cm}^{2}$
Now, for the area of triangle BCD
Perimeter of triangle BCD 2s = BC + CD + BD
2s = 29cm + 21cm + 20cm
s = 35 cm
By using Heron's Formula,
Area of the triangle $\mathrm{BCD}=\sqrt{\mathrm{s} \times(\mathrm{s}-\mathrm{a}) \times(\mathrm{s}-\mathrm{b}) \times(\mathrm{s}-\mathrm{c})}$
$=\sqrt{35 \times(14) \times(6) \times(15)}$
$=210 \mathrm{~cm}^{2}$
Therefore, Area of quadrilateral ABCD = Area of triangle ABD + Area of triangle BCD
Area of quadrilateral ABCD = 336 + 210
Area of quadrilateral $\mathrm{ABCD}=546 \mathrm{~cm}^{2}$