Find the area of given figure ABCDEFGH as per dimensions given in it.
We will find the length of $\mathrm{AC}$.
From the right triangles $\mathrm{ABC}$ and HGF, we have:
$\mathrm{AC}^{2}=\mathrm{HF}^{2}=\left\{(5)^{2}-(4)^{2}\right\} \mathrm{cm}$
$=(25-16) \mathrm{cm}$
$=9 \mathrm{~cm}$
$\mathrm{AC}=\mathrm{HF}=\sqrt{9} \mathrm{~cm}$
$=3 \mathrm{~cm}$
Area of the given figure ABCDEFGH = (Area of rectangle ADEH) + (Area of $\Delta \mathrm{ABC})+($ Area of $\Delta \mathrm{HGF})$
$=($ Area of rectangle $\mathrm{ADEH})+2($ Area of $\Delta \mathrm{ABC})$
$=(\mathrm{AD} \times \mathrm{DE})+2($ Area of $\Delta \mathrm{ABC})$
$=\{(\mathrm{AC}+\mathrm{CD}) \times \mathrm{DE}\}+2\left(\frac{1}{2} \times \mathrm{BC} \times \mathrm{AC}\right)$
$=\{(3+4) \times 8\}+2\left(\frac{1}{2} \times 4 \times 3\right) \mathrm{cm}^{2}$
$=(56+12) \mathrm{cm}$
$=68 \mathrm{~cm}^{2}$
Hence, the area of the given figure is $68 \mathrm{~cm}^{2}$.