Find the area of a triangular field whose sides are 91 cm, 98 m and 105 m in length. Find the height corresponding to the longest side.
Let :
$a=91 \mathrm{~m}, b=98 \mathrm{~m}$ and $c=105 \mathrm{~m}$
$\therefore s=\frac{a+b+c}{2}=\frac{91+98+105}{2}=147 \mathrm{~m}$
By Heron's formula, we have :
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{147(147-91)(147-98)(147-105)}$
$=\sqrt{147 \times 56 \times 49 \times 42}$
$=\sqrt{7 \times 3 \times 7 \times 2 \times 2 \times 2 \times 7 \times 7 \times 7 \times 7 \times 3 \times 2}$
$=7 \times 7 \times 7 \times 2 \times 3 \times 2$
$=4116 \mathrm{~m}^{2}$
We know that the longest side is 105 m.
Thus, we can find out the height of the triangle corresponding to 42 cm.
Area of triangle $=4116 \mathrm{~m}^{2}$
$\Rightarrow \frac{1}{2} \times$ Base $\times$ Height $=4116$
$\Rightarrow$ Height $=\frac{4116 \times 2}{105}=78.4 \mathrm{~m}$