Question:
Find the area of a triangle whose sides are respectively 9 cm, 12 cm and 15 cm.
Solution:
Let the sides of the given triangle be a, b, c respectively.
So given,
a = 9 cm
b = 12 cm
c = 15 cm
By using Heron's Formula
The Area of the triangle $=\sqrt{s \times(s-a) \times(s-b) \times(s-c)}$
Semi perimeter of a triangle = s
2s = a + b + c
s = (a + b + c)/2
s = (9 + 12 + 15)/2
s = 18 cm
Therefore,
Area of the triangle $=\sqrt{s \times(s-a) \times(s-b) \times(s-c)}$
$=\sqrt{18 \times(18-9) \times(18-12) \times(18-15)}$
$=54 \mathrm{~cm}^{2}$