Find the area of a triangle whose sides are respectively 150 cm, 120 cm and 200 cm.

Question:

Find the area of a triangle whose sides are respectively 150 cm, 120 cm and 200 cm.

Solution:

Let the sides of the given triangle be a, b, c respectively.

So given,

a = 150 cm

b = 120 cm

c = 200 cm

By using Heron's Formula

The Area of the triangle $=\sqrt{s \times(s-a) \times(s-b) \times(s-c)}$

Semi perimeter of a triangle = s

2s = a + b + c

s = (a + b + c)/2

s = (150 + 200 + 120)/2

s = 235 cm

Therefore,

Area of the triangle $=\sqrt{s \times(s-a) \times(s-b) \times(s-c)}$

$=\sqrt{235 \times(235-150) \times(235-200) \times(235-120)}$

$=8966.56 \mathrm{~cm}^{2}$

Leave a comment