Question:
Find the area of a triangle whose sides are respectively 150 cm, 120 cm and 200 cm.
Solution:
Let the sides of the given triangle be a, b, c respectively.
So given,
a = 150 cm
b = 120 cm
c = 200 cm
By using Heron's Formula
The Area of the triangle $=\sqrt{s \times(s-a) \times(s-b) \times(s-c)}$
Semi perimeter of a triangle = s
2s = a + b + c
s = (a + b + c)/2
s = (150 + 200 + 120)/2
s = 235 cm
Therefore,
Area of the triangle $=\sqrt{s \times(s-a) \times(s-b) \times(s-c)}$
$=\sqrt{235 \times(235-150) \times(235-200) \times(235-120)}$
$=8966.56 \mathrm{~cm}^{2}$