Find the area of a trapezium whose parallel sides of lengths 10 cm and 15 cm are at a distance of 6 cm from each other.
Find the area of a trapezium whose parallel sides of lengths 10 cm and 15 cm are at a distance of 6 cm from each other. Calculate this area as
(i) the sum of the areas of two triangles and one rectangle.
(ii) the difference of the area of a rectangle and the sum of the areas of two triangles.
Given:
Length of the parallel sides of a trapezium are $10 \mathrm{~cm}$ and $15 \mathrm{~cm}$.
The distance between them is $6 \mathrm{~cm}$.
Let us extend the smaller side and then draw perpendiculars from the ends of both sides.
(i) Area of trapezium $\mathrm{ABCD}=($ Area of rectangle EFCD $)+($ Area of triangle $\mathrm{AED}+$ Area of triangle $\mathrm{BFC})$
$=(10 \times 6)+\left[\left(\frac{1}{2} \times \mathrm{AE} \times \mathrm{ED}\right)+\left(\frac{1}{2} \times \mathrm{BF} \times \mathrm{FC}\right)\right]$
$=60+\left[\left(\frac{1}{2} \times \mathrm{AE} \times 6\right)+\left(\frac{1}{2} \times \mathrm{BF} \times 6\right)\right]$
$=60+[3 \mathrm{AE}+3 \mathrm{BF}]$
$=60+3 \times(\mathrm{AE}+\mathrm{BF})$
Here, $\mathrm{AE}+\mathrm{EF}+\mathrm{FB}=15 \mathrm{~cm}$
And $\mathrm{EF}=10 \mathrm{~cm}$
$\therefore \mathrm{AE}+10+\mathrm{BF}=15$
Or, $A E+B F=15-10=5 \mathrm{~cm}$
Putting this value in the above formula:
Here, $\mathrm{AE}+\mathrm{EF}+\mathrm{FB}=15 \mathrm{~cm}$
And $\mathrm{EF}=10 \mathrm{~cm}$
$\therefore \mathrm{AE}+10+\mathrm{BF}=15$
Or, $A E+B F=15-10=5 \mathrm{~cm}$
Putting this value in the above formula:
Area of the trapezium $=60+3 \times(5)=60+15=75 \mathrm{~cm}^{2}$
(ii) In this case, the figure will look as follows:
Area of trapezium $\mathrm{ABCD}=($ Area of rectangle $\mathrm{ABGH})-[($ Area of triangle $\mathrm{AHD})+($ Area of triangle BGC $)$
$=(15 \times 6)-\left[\left(\frac{1}{2} \times \mathrm{DH} \times 6\right)+\left(\frac{1}{2} \times \mathrm{GC} \times 6\right)\right]$
$=90-[3 \times \mathrm{DH}+3 \times \mathrm{GC}]$
$=90-3[\mathrm{DH}+\mathrm{GC}]$
Here, $\mathrm{HD}+\mathrm{DC}+\mathrm{CG}=15 \mathrm{~cm}$
$\mathrm{DC}=10 \mathrm{~cm}$
$\mathrm{HD}+10+\mathrm{CG}=15$
$\mathrm{HD}+\mathrm{GC}=15-10=5 \mathrm{~cm}$
Putting this value in the above equation:
Area of the trapezium $=90-3(5)=90-15=75 \mathrm{~cm}^{2}$