Question.
Find the area of a quadrilateral ABCD in which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm.
Solution:
For $\triangle \mathrm{ABC}$,
$A C^{2}=A B^{2}+B C^{2}$
$(5)^{2}=(3)^{2}+(4)^{2}$
Therefore, $\triangle \mathrm{ABC}$ is a right-angled triangle, right-angled at point $\mathrm{B}$.
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{BC}=\frac{1}{2} \times 3 \times 4=6 \mathrm{~cm}^{2}$
For $\triangle \mathrm{ADC}$,
Perimeter $=2 s=A C+C D+D A=(5+4+5) \mathrm{cm}=14 \mathrm{~cm}$
$s=7 \mathrm{~cm}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of $\Delta \mathrm{ADC}=[\sqrt{7(7-5)(7-5)(7-4)}] \mathrm{cm}^{2}$
$=(\sqrt{7 \times 2 \times 2 \times 3}) \mathrm{cm}^{2}$
$=2 \sqrt{21} \mathrm{~cm}^{2}$
$=(2 \times 4.583) \mathrm{cm}^{2}$
$=9.166 \mathrm{~cm}^{2}$
Area of $A B C D=$ Area of $\triangle A B C+$ Area of $\triangle A C D$
$=(6+9.166) \mathrm{cm}^{2}=15.166 \mathrm{~cm}^{2}=15.2 \mathrm{~cm}^{2}$ (approximately)
For $\triangle \mathrm{ABC}$,
$A C^{2}=A B^{2}+B C^{2}$
$(5)^{2}=(3)^{2}+(4)^{2}$
Therefore, $\triangle \mathrm{ABC}$ is a right-angled triangle, right-angled at point $\mathrm{B}$.
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{BC}=\frac{1}{2} \times 3 \times 4=6 \mathrm{~cm}^{2}$
For $\triangle \mathrm{ADC}$,
Perimeter $=2 s=A C+C D+D A=(5+4+5) \mathrm{cm}=14 \mathrm{~cm}$
$s=7 \mathrm{~cm}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of $\Delta \mathrm{ADC}=[\sqrt{7(7-5)(7-5)(7-4)}] \mathrm{cm}^{2}$
$=(\sqrt{7 \times 2 \times 2 \times 3}) \mathrm{cm}^{2}$
$=2 \sqrt{21} \mathrm{~cm}^{2}$
$=(2 \times 4.583) \mathrm{cm}^{2}$
$=9.166 \mathrm{~cm}^{2}$
Area of $A B C D=$ Area of $\triangle A B C+$ Area of $\triangle A C D$
$=(6+9.166) \mathrm{cm}^{2}=15.166 \mathrm{~cm}^{2}=15.2 \mathrm{~cm}^{2}$ (approximately)