Find the area enclosed by each of the following figures [Fig. 20.49 (i)-(iii)] as the sum of the areas of a rectangle and a trapezium:
(i) The given figure can be divided into a rectangle and a trapezium as shown below:
From the above firgure:
Area of the complete figure $=($ Area of square $\mathrm{ABCF})+($ Area of trapezium $\mathrm{CDEF})$
$=(\mathrm{AB} \times \mathrm{BC})+\left[\frac{1}{2} \times(\mathrm{FC}+\mathrm{ED}) \times(\right.$ Distance between $\mathrm{FC}$ and $\left.\mathrm{ED})\right]$
$=(18 \times 18)+\left[\frac{1}{2} \times(18+7) \times(8)\right]$
$=324+100$
$=424 \mathrm{~cm}^{2}$
(ii) The given figure can be divided in the following manner:
From the above figure:
$\mathrm{AB}=\mathrm{AC}-\mathrm{BC}=28-20=8 \mathrm{~cm}$
So that area of the complete figure $=($ area of rectangle $\mathrm{BCDE})+($ area of trapezium $\mathrm{ABEF})$
$=(\mathrm{BC} \times \mathrm{CD})+\left[\frac{1}{2} \times(\mathrm{BE}+\mathrm{AF}) \times(\mathrm{AB})\right]$
$=(20 \times 15)+\left[\frac{1}{2} \times(15+6) \times(8)\right]$
$=300+84$
$=384 \mathrm{~cm}^{2}$
(iii) The given figure can be divided in the following manner:
From the above figure:
$\mathrm{EF}=\mathrm{AB}=6 \mathrm{~cm}$
Now, using the Pythagoras theorem in the right angle triangle CDE:
$5^{2}=4^{2}+\mathrm{CE}^{2}$
$\mathrm{CE}^{2}=25-16=9$
$\mathrm{CE}=\sqrt{9}=3 \mathrm{~cm}$
And, $\mathrm{GD}=\mathrm{GH}+\mathrm{HC}+\mathrm{CD}=4+6+4=14 \mathrm{~cm}$
$\therefore$ Area of the complete figure $=($ Area of rectangle $\mathrm{ABCH})+($ Area of trapezium GDEF $)$
$=(\mathrm{AB} \times \mathrm{BC})+\left[\frac{1}{2} \times(\mathrm{GD}+\mathrm{EF}) \times(\mathrm{CE})\right]$
$=(6 \times 4)+\left[\frac{1}{2} \times(14+6) \times(3)\right]$
$=24+30$
$=54 \mathrm{~cm}^{2}$