Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$
The area bounded by the curve, $x^{2}=4 y$, and line, $x=4 y-2$, is represented by the shaded area $\mathrm{OBAO}$.
Let A and B be the points of intersection of the line and parabola.
Coordinates of point $A$ are $\left(-1, \frac{1}{4}\right)$.
Coordinates of point $\mathrm{B}$ are $(2,1)$.
We draw AL and BM perpendicular to $x$-axis.
It can be observed that,
Area $\mathrm{OBAO}=$ Area $\mathrm{OBCO}+$ Area $\mathrm{OACO}$
Then, Area OBCO = Area OMBC - Area OMBO
$=\int_{0}^{2} \frac{x+2}{4} d x-\int_{0}^{2} \frac{x^{2}}{4} d x$
$=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{0}^{2}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{2}$
$=\frac{1}{4}[2+4]-\frac{1}{4}\left[\frac{8}{3}\right]$
$=\frac{3}{2}-\frac{2}{3}$
$=\frac{5}{6}$
Similarly, Area OACO = Area OLAC – Area OLAO
$=\int_{-1}^{0} \frac{x+2}{4} d x-\int_{-1}^{0} \frac{x^{2}}{4} d x$
$=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{0}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{-1}^{0}$
$=-\frac{1}{4}\left[\frac{(-1)^{2}}{2}+2(-1)\right]-\left[-\frac{1}{4}\left(\frac{(-1)^{3}}{3}\right)\right]$
$=-\frac{1}{4}\left[\frac{1}{2}-2\right]-\frac{1}{12}$
$=\frac{1}{2}-\frac{1}{8}-\frac{1}{12}$
$=\frac{7}{24}$
Therefore, required area $=\left(\frac{5}{6}+\frac{7}{24}\right)=\frac{9}{8}$ units