Find the area and perimeter of an isosceles right-angled triangle, each of whose equal sides measures $10 \mathrm{~cm}$. [Given: $\sqrt{2}=1.41$ ]
Let:
Length of each of the equal sides of the isosceles right-angled triangle = a = 10 cm
And,
Base = Height = a
Area of isosceles right $-$ angled triangle $=\frac{1}{2} \times$ Base $\times$ Height
$=\frac{1}{2} \times 10 \times 10$
$=50 \mathrm{~cm}^{2}$
The hypotenuse of an isosceles right-angled triangle can be obtained using Pythagoras' theorem.
If h denotes the hypotenuse, we have:
$h^{2}=a^{2}+a^{2}$
$\Rightarrow h=2 a^{2}$
$\Rightarrow h=\sqrt{2} a$
$\Rightarrow h=10 \sqrt{2} \mathrm{~cm}$
$\therefore$ Perimeter of the isosceles right-angled triangle $=2 a+\sqrt{2} a$
$=2 \times 10+1.41 \times 10$
$=20+14.1$
$=34.1 \mathrm{~cm}$