Question:
Find the approximate value of $f(2.01)$, where $f(x)=4 x^{2}+5 x+2$
Solution:
Let:
$x=2$
$x+\Delta x=2.01$
$\Rightarrow \Delta x=0.01$
$f(x)=4 x^{2}+5 x+2$
$\Rightarrow f(x=2)=16+10+2=28$
Now, $y=f(x)$
$\Rightarrow \frac{d y}{d x}=8 x+5$
$\therefore d y=\Delta y=\frac{d y}{d x} d x=(8 x+5) \times 0.01=(16+5) \times 0.01=0.21$
$\therefore f(2.01)=y+\Delta y=28.21$