Find the angle to intersection of the following curves :
$y=4-x^{2}$ and $y=x^{2}$
Given:
Curves $y=4-x^{2} \ldots(1)$
$\& y=x^{2} \ldots(2)$
Solving $(1) \&(2)$, we get
$\Rightarrow y=4-x^{2}$
$\Rightarrow x^{2}=4-x^{2}$
$\Rightarrow 2 x^{2}=4$
$\Rightarrow x^{2}=2$
$\Rightarrow x=\pm \sqrt{2}$
Substituting $\sqrt{2}$ in $y=x^{2}$, we get
$y=(\sqrt{2})^{2}$
$y=2$
The point of intersection of two curves are $(\sqrt{2}, 2) \&(-\sqrt{2},-2)$
First curve $y=4-x^{2}$
Differentiating above w.r.t $\mathrm{x}$,
$\Rightarrow \frac{d y}{d x}=0-2 x$
$\Rightarrow m_{1}=-2 x \ldots(3)$
Second curve $y=x^{2}$
Differentiating above w.r.t $\mathrm{x}$,
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}$
$m_{2}=2 x \ldots(4)$
At $(\sqrt{2}, 2)$, we have,
$m_{1}=\frac{d y}{d x}=-2 x$
$\Rightarrow-2 \times \sqrt{2}$
$\Rightarrow m_{1}=-2 \sqrt{2}$
At $(-\sqrt{2}, 2)$, we have,
$m_{2}=\frac{d y}{d x}=-2 x$
$(-1) \times-\sqrt{2} \times 2=2 \sqrt{2}$
When $m_{1}=-2 \sqrt{2} \& m_{2}=2 \sqrt{2}$
$\tan \theta=\left|\frac{-2 \sqrt{2}-2 \sqrt{2}}{1-2 \sqrt{2} \times 2 \sqrt{2}}\right|$
$\tan \theta=\left|\frac{-4 \sqrt{2}}{1-8}\right|$
$\tan \theta=\left|\frac{-4 \sqrt{2}}{-7}\right|$
$\tan \theta=\frac{4 \sqrt{2}}{7}$
$\theta=\tan ^{-1}\left(\frac{4 \sqrt{2}}{7}\right)$
$\theta \cong 38.94$