Find the angle to intersection of the following curves:
$x^{2}+4 y^{2}=8$ and $x^{2}-2 y^{2}=2$
Given:
Curves $x^{2}+4 y^{2}=8 \ldots(1)$
$\& x^{2}-2 y^{2}=2 \ldots(2)$]
Solving $(1) \&(2)$, we get,
from 2 nd curve,
$x^{2}=2+2 y^{2}$
Substituting on $x^{2}+4 y^{2}=8$,
$\Rightarrow 2+2 y^{2}+4 y^{2}=8$
$\Rightarrow 6 y^{2}=6$
$\Rightarrow y^{2}=1$
$\Rightarrow y=\pm 1$
Substituting on $y=\pm 1$, we get,
$\Rightarrow x^{2}=2+2(\pm 1)^{2}$
$\Rightarrow x^{2}=4$
$\Rightarrow x=\pm 2$
$\therefore$ The point of intersection of two curves $(2,1) \&(-2,-1)$
Now, Differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow x^{2}+4 y^{2}=8$
$\Rightarrow 2 x+8 y \cdot \frac{d y}{d x}=0$
$\Rightarrow 8 y \cdot \frac{d y}{d x}=-2 x$
$\Rightarrow \frac{d y}{d x}=\frac{-x}{4 y} \ldots(3)$
$\Rightarrow x^{2}-2 y^{2}=2$
$\Rightarrow 2 x-4 y \cdot \frac{d y}{d x}=0$
$\Rightarrow x-2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow 4 y \frac{d y}{d x}=x$
$\Rightarrow \frac{d y}{d x}=\frac{x}{2 y} \ldots(4)$
At $(2,1)$ in equation $(3)$, we get
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-2}{4 \times 1}$
$\Rightarrow \mathrm{m}_{1}=\frac{-1}{2}$
At $(2,1)$ in equation $(4)$, we get
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{2 \times 1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1$
$\Rightarrow \mathrm{m}_{2}=1$
when $m_{1}=\frac{-1}{2} \& m_{2}=1$
$\Rightarrow \tan \theta=\left|\frac{\frac{-1}{2}-1}{1+\frac{-1}{2} \times 1}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{-2}{2}}{1-\frac{1}{2}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{-3}{2}}{\frac{1}{2}}\right|$
$\Rightarrow \tan \theta=|-3|$
$\Rightarrow \theta=\tan ^{-1}(3)$
$\Rightarrow \theta \cong 71.56$