Find the angle to intersection of the following curves:
$y^{2}=x$ and $x^{2}=y$
Given:
Curves $y^{2}=x \ldots(1)$
$\& x^{2}=y \ldots(2)$
First curve is $y^{2}=x$
Differentiating above w.r.t $x$,
$\Rightarrow 2 y \cdot \frac{d y}{d x}=1$
$\Rightarrow m_{1}=\frac{d y}{d x}=\frac{1}{2 x} \ldots(3)$
The second curve is $x^{2}=y$
$\Rightarrow 2 x=\frac{d y}{d x}$
$\Rightarrow m_{2}=\frac{d y}{d x}=2 x \ldots(4)$
Substituting (1) in (2), we get
$\Rightarrow x^{2}=y$
$\Rightarrow\left(y^{2}\right)^{2}=y$
$\Rightarrow y^{4}-y=0$
$\Rightarrow y\left(y^{3}-1\right)=0$
$\Rightarrow y=0$ or $y=1$
Substituting $y=0 \& y=1$ in $(1)$ in $(2)$,
$x=y^{2}$
when $y=0, x=0$
when $y=1, x=1$
Substituting above values for $m_{1} \& m_{2}$, we get,
when $x=0$
$m_{1}=\frac{d y}{d x}=\frac{1}{2 \times 0}=\infty$
when $x=1$
$m_{1}=\frac{d y}{d x}=\frac{1}{2 \times 1}=\frac{1}{2}$
Values of $m_{1}$ is $\infty \& \frac{1}{2}$
when $y=0$ ,
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}=2 \times 0=0$
when $x=1$
$m_{2}=\frac{d y}{d x}=3 x=2 \times 1=2$
Values of $m_{2}$ is $0 \& 2$
when $m_{1}=\infty \& m_{2}=0$
$\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\tan \theta=\left|\frac{0-\infty}{1+\infty \times 0}\right|$
$\tan \theta=\infty$
$\theta=\tan ^{-1}(\infty)$
$\therefore \tan ^{-1}(\infty)=\frac{\pi}{2}$
$\theta=\frac{\pi}{2}$
when $m_{1}=\frac{1}{2} \& m_{2}=2$
$\tan \theta=\left|\frac{2-\frac{1}{2}}{1+\frac{1}{2} \times 2}\right|$
$\tan \theta=\left|\frac{\frac{2}{2}}{2}\right|$
$\tan \theta=\left|\frac{3}{4}\right|$
$\theta=\tan ^{-1}\left(\frac{3}{4}\right)$
$\theta \equiv 36.86$