Find the angle in radians through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
Question:
Find the angle in radians through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
(i) 10 cm
(ii) 15 cm
(iii) 21 cm.
Solution:
We know:
Radius = 75 cm
(i) Length of the arc = 10 cm
Now,
$\theta=\frac{\text { Radius }}{\text { Rade }}$
$=\frac{10}{75}$
$=\frac{2}{15} \operatorname{radian}$
(ii) Length of the arc = 15 cm
Now,
$\theta=\frac{\text { Arc }}{\text { Radius }}$
$=\frac{15}{75}$
$=\frac{1}{5}$ radian
(iii) Length of the arc = 21 cm
Now,
$\theta=\frac{\text { Arc }}{\text { Radius }}$
$=\frac{21}{75}$
$=\frac{7}{25}$ radian