Find the angle between the planes whose vector equations are
$\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$.
The equations of the given planes are $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$
It is known that if $\vec{n}_{1}$ and $\vec{n}_{2}$ are normal to the planes, $\vec{r} \cdot \vec{n}_{1}=d_{1}$ and $\vec{r} \cdot \vec{n}_{2}=d_{2}$, then the angle between them, $Q$, is given by,
$\cos Q=\left|\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left|\vec{n}_{1}\right|\left|\vec{n}_{2}\right|}\right|$ $\ldots(1)$
Here, $\vec{n}_{1}=2 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{n}_{2}=3 \hat{i}-3 \hat{j}+5 \hat{k}$
$\therefore \vec{n}_{1} \cdot \vec{n}_{2}=(2 \hat{i}+2 \hat{j}-3 \hat{k})(3 \hat{i}-3 \hat{j}+5 \hat{k})=2.3+2 .(-3)+(-3) .5=-15$
$\left|\vec{n}_{1}\right|=\sqrt{(2)^{2}+(2)^{2}+(-3)^{2}}=\sqrt{17}$
$\left|\vec{n}_{2}\right|=\sqrt{(3)^{2}+(-3)^{2}+(5)^{2}}=\sqrt{43}$
Substituting the value of $\vec{n} \cdot \vec{n}_{2},\left|\vec{n}_{1}\right|$ and $\left|\vec{n}_{2}\right|$ in equation (1), we obtain
$\cos Q=\left|\frac{-15}{\sqrt{17} \cdot \sqrt{43}}\right|$
$\Rightarrow \cos Q=\frac{15}{\sqrt{731}}$
$\Rightarrow \cos Q^{-1}=\left(\frac{15}{\sqrt{731}}\right)$