Find the angle between the lines whose slopes are

Question:

Find the angle between the lines whose slopes are 

$(2-\sqrt{3})$ and $(2+\sqrt{3})$

 

Solution:

We know that if slope of two lines are m1 and m2 respectively, then the angle between them is given by

$\tan \theta=\frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}$

Here $\mathrm{m}_{2}=2+\sqrt{3}$ and $\mathrm{m}_{1}=2-\sqrt{3}$

$\tan \theta=\frac{(2+\sqrt{3})-(2-\sqrt{3})}{1+(2+\sqrt{3})(2-\sqrt{3})}$

$=\frac{2 \sqrt{3}}{1+\left(2^{2}-(\sqrt{3})^{2}\right)}$

$=\frac{2 \sqrt{3}}{1+1}=\sqrt{3}$

$\tan \theta=\sqrt{3}$

$\Rightarrow \theta=\tan ^{-1}(\sqrt{3})$

$\Rightarrow \theta=60^{\circ}$

Where θ is the angle between two lines

 

Leave a comment