Question:
Find the angle between the lines whose slopes are
$(2-\sqrt{3})$ and $(2+\sqrt{3})$
Solution:
We know that if slope of two lines are m1 and m2 respectively, then the angle between them is given by
$\tan \theta=\frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}$
Here $\mathrm{m}_{2}=2+\sqrt{3}$ and $\mathrm{m}_{1}=2-\sqrt{3}$
$\tan \theta=\frac{(2+\sqrt{3})-(2-\sqrt{3})}{1+(2+\sqrt{3})(2-\sqrt{3})}$
$=\frac{2 \sqrt{3}}{1+\left(2^{2}-(\sqrt{3})^{2}\right)}$
$=\frac{2 \sqrt{3}}{1+1}=\sqrt{3}$
$\tan \theta=\sqrt{3}$
$\Rightarrow \theta=\tan ^{-1}(\sqrt{3})$
$\Rightarrow \theta=60^{\circ}$
Where θ is the angle between two lines