Question:
Find the absolute maximum and minimum values of a function $f$ given by
$f(x)=2 x^{3}-15 x^{2}+36 x+1$ on the interval $[1,5]$
Solution:
Given : $f(x)=2 x^{3}-15 x^{2}+36 x+1$
$\Rightarrow f^{\prime}(x)=6 x^{2}-30 x+36$
For a local maximum or a local minimum, we have
$f^{\prime}(x)=0$
$\Rightarrow 6 x^{2}-30 x+36=0$
$\Rightarrow x^{2}-5 x+6=0$
$\Rightarrow(x-3)(x-2)=0$
$\Rightarrow x=2$ and $x=3$
Thus, the critical points of $f$ are $1,2,3$ and 5 .
Now,
$f(1)=2(1)^{3}-15(1)^{2}+36(1)+1=24$
$f(2)=2(2)^{3}-15(2)^{2}+36(2)+1=29$
$f(3)=2(3)^{3}-15(3)^{2}+36(3)+1=28$
$f(5)=2(5)^{3}-15(5)^{2}+36(5)+1=56$
Hence, the absolute maximum value when $x=5$ is 56 and the absolute minimum value when $x=1$ is 24 .