Question:
Find the 4 th term from the end in the expansion of $\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{8}$.
Solution:
Let Tr+1 be the 4th term from the end of the given expression.
Then,
Tr+1 is (10 − 4 + 1)th term, i.e., 7th term, from the beginning.
Thus, we have:
$T_{7}=T_{6+1}$
$={ }^{9} C_{6}\left(\frac{4 x}{5}\right)^{9-6}\left(\frac{5}{2 x}\right)^{6}$
$=\frac{9 \times 8 \times 7}{3 \times 2}\left(\frac{64}{125} x^{3}\right)\left(\frac{125 \times 125}{64 x^{6}}\right)$
$=\frac{10500}{x^{3}}$