Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Let $T_{n}$ be the $n$th term of the given series.
Thus, we have:
$T_{n}=2 n(2 n+2)=4 n^{2}+4 n$
For n = 20, we have:
$T_{20}=4 n^{2}+4 n$
$=4(20)^{2}+4(20)$
$=1600+80$
$=1680$
Therefore, the 20 th term of the given series is 1680 .
Now, let $S_{n}$ be the sum of $n$ terms of the given series.
Thus, we have:
$S_{n}=\sum_{k=1}^{n} T_{k}$
$\Rightarrow S_{n}=\sum_{k=1}^{n}\left(4 k^{2}+4 k\right)$
$\Rightarrow S_{n}=4 \sum_{k=1}^{n} k^{2}+4 \sum_{k=1}^{n} k$
For n = 20, we have
$S_{20}=4 \sum_{k=1}^{20} k^{2}+4 \sum_{k=1}^{20} k$
$\Rightarrow S_{20}=\frac{4(20)(21)(41)}{6}+\frac{4(20)(21)}{2}$
$\Rightarrow S_{20}=(40)(7)(41)+(40)(21)$
$\Rightarrow S_{20}=11480+840=12320$
Hence, the sum of the first 20 terms of the series is 12320.