Find rational numbers a and b such that
(i) $\frac{\sqrt{2}-1}{\sqrt{2}+1}=a+b \sqrt{2}$
(ii) $\frac{2-\sqrt{5}}{2+\sqrt{5}}=a \sqrt{5}+b$
(iii) $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=a+b \sqrt{6}$
(iv) $\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}=a+b \sqrt{3}$
(i)
$\frac{\sqrt{2}-1}{\sqrt{2}+1}$
$=\frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}$
$=\frac{(\sqrt{2}-1)^{2}}{(\sqrt{2})^{2}-1^{2}}$
$=\frac{2+1-2 \sqrt{2}}{2-1}$
$=3-2 \sqrt{2}$
$\therefore \frac{\sqrt{2}-1}{\sqrt{2}+1}=3+(-2) \sqrt{2}=a+b \sqrt{2}$
$\Rightarrow a=3, b=-2$
(ii)
$\frac{2-\sqrt{5}}{2+\sqrt{5}}$
$=\frac{2-\sqrt{5}}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$
$=\frac{(2-\sqrt{5})^{2}}{(2)^{2}-(\sqrt{5})^{2}}$
$=\frac{4+5-4 \sqrt{5}}{4-5}$
$=\frac{9-4 \sqrt{5}}{-1}$
$=-9+4 \sqrt{5}$
$\therefore \frac{2-\sqrt{5}}{2+\sqrt{5}}=4 \sqrt{5}+(-9)=a \sqrt{5}+b$
$\Rightarrow a=4, b=-9$
(iii)
$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$
$=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} \times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
$=\frac{(\sqrt{3}+\sqrt{2})^{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}$
$=\frac{3+2+2 \times \sqrt{3} \times \sqrt{2}}{3-2}$
$=5+2 \sqrt{6}$
$\therefore \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=5+2 \sqrt{6}=a+b \sqrt{6}$
$\Rightarrow a=5, b=2$
(iv)
$\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}$
$=\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}} \times \frac{7-4 \sqrt{3}}{7-4 \sqrt{3}}$
$=\frac{35-20 \sqrt{3}+14 \sqrt{3}-24}{(7)^{2}-(4 \sqrt{3})^{2}}$
$=\frac{11-6 \sqrt{3}}{49-48}$
$=11-6 \sqrt{3}$
$\therefore \frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}=11+(-6) \sqrt{3}=a+b \sqrt{3}$
$\Rightarrow a=11, b=-6$