Find $\frac{d y}{d x}$ of function.
$(\cos x)^{y}=(\cos y)^{x}$
The given function is $(\cos x)^{y}=(\cos y)^{x}$
Taking logarithm on both the sides, we obtain
$y \log \cos x=x \log \cos y$
Differentiating both sides, we obtain
$\log \cos x \cdot \frac{d y}{d x}+y \cdot \frac{d}{d x}(\log \cos x)=\log \cos y \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\log \cos y)$
$\Rightarrow \log \cos x \frac{d y}{d x}+y \cdot \frac{1}{\cos x} \cdot \frac{d}{d x}(\cos x)=\log \cos y \cdot 1+x \cdot \frac{1}{\cos y} \cdot \frac{d}{d x}(\cos y)$
$\Rightarrow \log \cos x \frac{d y}{d x}+\frac{y}{\cos x} \cdot(-\sin x)=\log \cos y+\frac{x}{\cos y}(-\sin y) \cdot \frac{d y}{d x}$
$\Rightarrow \log \cos x \frac{d y}{d x}-y \tan x=\log \cos y-x \tan y \frac{d y}{d x}$
$\Rightarrow(\log \cos x+x \tan y) \frac{d y}{d x}=y \tan x+\log \cos y$
$\therefore \frac{d y}{d x}=\frac{y \tan x+\log \cos y}{x \tan y+\log \cos x}$