Find numerically the greatest term in the expansion of $(2+3 x)^{9}$
where . $x=\frac{3}{2}$
To Find : numerically greatest term
For $(2+3 x)^{9}$
$a=2, b=3 x$ and $n=9$
We have relation,
$\mathrm{t}_{\mathrm{r}+1} \geq \mathrm{t}_{\mathrm{r}}$ or $\frac{\mathrm{t}_{\mathrm{r}+1}}{\mathrm{t}_{\mathrm{r}}} \geq 1$
We have a formula,
$\mathrm{t}_{\mathrm{r}+1}=\left(\begin{array}{l}\mathrm{n} \\ \mathrm{r}\end{array}\right) \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
$=\left(\begin{array}{l}9 \\ r\end{array}\right) 2^{9-r}(3 x)^{r}$
$=\frac{9 !}{(9-\mathrm{r}) ! \times \mathrm{r} !} 2^{9-\mathrm{r}}(3)^{\mathrm{r}}(\mathrm{x})^{\mathrm{r}}$
$\therefore \mathrm{t}_{\mathrm{r}}=\left(\begin{array}{c}\mathrm{n} \\ \mathrm{r}-1\end{array}\right) \mathrm{a}^{\mathrm{n}-\mathrm{r}+1} \mathrm{~b}^{\mathrm{r}-1}$
$=\left(\begin{array}{c}9 \\ r-1\end{array}\right) 2^{9-r+1}(3 x)^{r-1}$
$=\frac{9 !}{(9-r+1) ! \times(r-1) !} 2^{10-r}(3)^{r-1}(x)^{r-1}$
$=\frac{9 !}{(10-r) ! \times(r-1) !} 2^{10-r}(3)^{r-1}(x)^{r-1}$
$\therefore \frac{\mathrm{t}_{\mathrm{r}+1}}{\mathrm{t}_{\mathrm{r}}} \geq 1$
$\therefore \frac{\frac{9 !}{(9-\mathrm{r}) ! \times \mathrm{r} !} 2^{9-\mathrm{r}}(3)^{\mathrm{r}}(\mathrm{x})^{\mathrm{r}}}{\frac{9 !}{(10-\mathrm{r}) ! \times(\mathrm{r}-1) !} 2^{10-\mathrm{r}}(3)^{\mathrm{r}-1}(\mathrm{x})^{\mathrm{r}-1}} \geq 1$
$\therefore \frac{9 !}{(9-r) ! \times r !} 2^{9-r}(3)^{r}(x)^{r} \geq \frac{9 !}{(10-r) ! \times(r-1) !} 2^{10-r}(3)^{r-1}(x)^{r-1}$
$\therefore \frac{9 !}{(9-r) ! \times r(r-1) !} 2^{9-r}(3)(3)^{r-1}(x)(x)^{r-1}$
$\geq \frac{9 !}{(10-\mathrm{r})(9-\mathrm{r}) ! \times(\mathrm{r}-1) !}(2) 2^{9-\mathrm{r}}(3)^{\mathrm{r}-1}(\mathrm{x})^{\mathrm{r}-1}$
$\therefore \frac{1}{r}(3)(x) \geq \frac{1}{(10-r)}(2)$
At $x=3 / 2$
$\therefore \frac{1}{\mathrm{r}}(3) \frac{3}{2} \geq \frac{1}{(10-\mathrm{r})}(2)$
$\therefore \frac{9}{4} \geq \frac{r}{(10-r)}$
$\therefore 9(10-r) \geq 4 r$
$\therefore 90-9 r \geq 4 r$
- $90 \geq 13 r$
- $r \leq 6.923$
Therefore, $r=6$ and hence the $7^{\text {th }}$ term is numerically greater.
By using formula,
$t_{r+1}=\left(\begin{array}{l}n \\ r\end{array}\right) a^{n-r} b^{r}$
$\mathrm{t}_{7}=\left(\begin{array}{l}9 \\ 7\end{array}\right) 2^{9-7}(3 \mathrm{x})^{7}$
$=\left(\begin{array}{l}9 \\ 2\end{array}\right) 2^{2}(3)^{7}(x)^{7}$
Conclusion : the $7^{\text {th }}$ term is numerically greater with value $\left(\begin{array}{l}9 \\ 2\end{array}\right) 2^{2}(3)^{7}(\mathrm{x})^{7}$