Find $lim _{x ightarrow 1} f(x)$, where $f(x)=

Question:

Find $\lim _{x \rightarrow 1} f(x)$, where $f(x)= \begin{cases}x^{2}-1, & x \leq 1 \\ -x^{2}-1, & x>1\end{cases}$

Solution:

The given function is

$f(x)=\left\{\begin{array}{l}x^{2}-1, x \leq 1 \\ -x^{2}-1, x>1\end{array}\right.$

$\lim _{1} f(x)=\lim \left[x^{2}-1\right]=1^{2}-1=1-1=0$

$\lim _{x \rightarrow 1^{\prime}} f(x)=\lim _{x \rightarrow 1}\left[-x^{2}-1\right]=-1^{2}-1=-1-1=-2$

It is observed that $\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$.

Hence, $\lim _{x \rightarrow 1} f(x)$ does not exist.

Leave a comment