(i) $f(x)=e^{x}, g(x)=\log _{e} x$
(ii) $f(x)=x^{2}, g(x)=\cos x$
(iii) $f(x)=|x|, g(x)=\sin x$
(iv) $f(x)=x+1, g(x)=e^{x}$
(v) $f(x)=\sin ^{-1} x, g(x)=x^{2}$
(vi) $f(x)=x+1, g(x)=\sin x$
(vii) $f(x)=x+1, g(x)=2 x+3$
(viii) $f(x)=c, c \in R, g(x)=\sin x^{2}$
(ix) $f(x)=x^{2}+2, g(x)=1-\frac{1}{1-x}$
(i) $f(x)=e^{x}, g(x)=\log _{e} x$
$f: R \rightarrow(0, \infty) ; g:(0, \infty) \rightarrow R$
Computing fog:
Clearly, the range of g is a subset of the domain of f.
$f o g:(0, \infty) \rightarrow R$
$(f o g)(x)=f(g(x))$
$=f\left(\log _{e} x\right)$
$=\log _{e} e^{x}$
$=x$
Computing gof:
Clearly, the range of $f$ is a subset of the domain of $g$.
$\Rightarrow f o g: R \rightarrow R$
$(g \circ f)(x)=g(f(x))$
$=g\left(e^{x}\right)$
$=\log _{e} e^{x}$
$=x$
(ii) $f(x)=x^{2}, g(x)=\cos x$
$f: R \rightarrow[0, \infty) ; g: R \rightarrow[-1,1]$
Computing fog:
Clearly, the range of $g$ is not a subset of the domain of $f$.
$\Rightarrow$ Domain $(f o g)=\{x: x \in$ domain of $g$ and $g(x) \in$ domain of $f\}$
$\Rightarrow$ Domain $(f o g)=x: x \in R$ and $\cos x \in R\}$
$\Rightarrow$ Domain of $(f o g)=R$
$f o g: R \rightarrow R$
$(f o g)(x)=f(g(x))$
$=f(\cos x)$
$=\cos ^{2} x$
Computing gof:
Clearly, the range of $f$ is a subset of the domain of $g$.
$\Rightarrow f o g: R \rightarrow R$
$(g \circ f)(x)=g(f(x))$
$=g\left(x^{2}\right)$
$=\cos \left(x^{2}\right)$
(iii) $f(x)=|x|, g(x)=\sin x$
$f: R \rightarrow(0, \infty) ; g: R \rightarrow[-1,1]$
Computing fog:
Clearly, the range of $g$ is a subset of the domain of $f$.
$\Rightarrow f o g: R \rightarrow R$
$(f o g)(x)=f(g(x))$
$=f(\sin x)$
$=|\sin x|$
Computing gof:
Clearly, the range of $f$ is a subset of the domain of $g$.
$\Rightarrow f o g: R \rightarrow R$
$(g \circ f)(x)=g(f(x))$
$=g(|x|)$
$=\sin |x|$
$(i v) f(x)=x+1, g(x)=e^{x}$
$f: R \rightarrow R ; g: R \rightarrow[1, \infty)$
Computing fog:
Clearly, range of $g$ is a subset of domain of $f$.
$\Rightarrow f o g: R \rightarrow R$
$(f o g)(x)=f(g(x))$
$=f\left(e^{x}\right)$
$=e^{x}+1$
Computing gof:
Clearly, range of $f$ is a subset of domain of $g$.
$\Rightarrow f o g: R \rightarrow R$
$(g o f)(x)=g(f(x))$
$=g(x+1)$
$=e^{x+1}$
(v) $f(x)=\sin ^{-1} x, g(x)=x^{2}$
$f:[-1,1] \rightarrow\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] ; g: R \rightarrow[0, \infty)$
Computing fog:
Clearly, the range of $g$ is not a subset of the domain of $f$.
Domain $(f o g)=\{x: x \in$ domain of $g$ and $g(x) \in$ domain of $f\}$
Domain $(f o g)=\left\{x: x \in R\right.$ and $\left.x^{2} \in[-1,1]\right\}$
Domain $(f o g)=\{x: x \in R$ and $x \in[-1,1]\}$
Domain of $(f o g)=[-1,1]$
$f o g:[-1,1] \rightarrow R$
$(f o g)(x)=f(g(x))$
$=f\left(x^{2}\right)$
$=\sin ^{-1}\left(x^{2}\right)$
Computing gof:
Clearly, the range of $f$ is a subset of the domain of $g$.
$f o g:[-1,1] \rightarrow R$
$(g o f)(x)=g(f(x))$
$=g\left(\sin ^{-1} x\right)$
$=\left(\sin ^{-1} x\right)^{2}$
(vi) $f(x)=x+1, g(x)=\sin x$
$f: R \rightarrow R ; g: R \rightarrow[-1,1]$
Computing fog:
Clearly, the range of $g$ is a subset of the domain of $f$.
$\Rightarrow f \circ g: R \rightarrow R$
$(f \circ g)(x)=f(g(x))$
$=f(\sin x)$
$=\sin x+1$
Computing gof:
Clearly, the range of $f$ is a subset of the domain of $g$.
$\Rightarrow f o g: R \rightarrow R$
$(g o f)(x)=g(f(x))$
$=g(x+1)$
$=\sin (x+1)$
(vii) $f(x)=x+1, g(x)=2 x+3$
$f: R \rightarrow R ; g: R \rightarrow R$
Computing fog:
Clearly, the range of $g$ is a subset of the domain of $f$.
$\Rightarrow f o g: R \rightarrow R$
$(f o g)(x)=f(g(x))$
$=f(2 x+3)$
$=2 x+3+1$
$=2 x+4$
Computing gof:
Clearly, the range of $f$ is a subset of the domain of $g$.
$\Rightarrow f o g: R \rightarrow R$
$(g o f)(x)=g(f(x))$
$=g(x+1)$
$=2(x+1)+3$
$=2 x+5$
(viii) $f(x)=c, g(x)=\sin x^{2}$
$f: R \rightarrow\{c\} ; g: R \rightarrow[0,1]$
Computing fog:
Clearly, the range of $g$ is a subset of the domain of $f$.
$f o g: R \rightarrow R$
$(f o g)(x)=f(g(x))$
$=f\left(\sin x^{2}\right)$
$=c$
Computing gof:
Clearly, the range of $f$ is a subset of the domain of $g$.
$\Rightarrow f o g: R \rightarrow R$
$(g o f)(x)=g(f(x))$
$=g(c)$
$=\sin c^{2}$
$(i x) f(x)=x^{2}+2$
$f: R \rightarrow[2, \infty)$
$g(x)=1-\frac{1}{1-x}$
For domain of $g: 1-x \neq 0$
$\Rightarrow x \neq 1$
$\Rightarrow$ Domain of $g=R-\{1\}$
$g(x)=1-\frac{1}{1-x}=\frac{1-x-1}{1-x}=\frac{-x}{1-x}$
For range of $g$ :
$y=\frac{-x}{1-x}$
$\Rightarrow y-x y=-x$
$\Rightarrow y=x y-x$
$\Rightarrow y=x(y-1)$
$\Rightarrow x=\frac{y}{y-1}$
Range of $g=R-\{1\}$
So, g: $R-\{1\} \rightarrow R-\{1\}$
Computing fog:
Clearly, the range of $g$ is a subset of the domain of $f$.
$\Rightarrow f o g: R-\{1\} \rightarrow R$
$(f o g)(x)=f(g(x))$
$=f\left(\frac{-x}{x-1}\right)$
$=\left(\frac{-x}{x-1}\right)^{2}+2$
$=\frac{x^{2}+2 x^{2}+2-4 x}{(1-x)^{2}}$
$=\frac{3 x^{2}-4 x+2}{(1-x)^{2}}$
Computing gof:
Clearly, the range of $f$ is a subset of the domain of $g$.
$\Rightarrow g o f: R \rightarrow R$
$(g o f)(x)=g(f(x))$
$=g\left(x^{2}+2\right)$
$=1-\frac{1}{1-\left(x^{2}+2\right)}$
$=1-\frac{1}{-\left(x^{2}+1\right)}$
$=\frac{x^{2}+2}{x^{2}+1}$