Find five rational numbers between $\frac{3}{5}$ and $\frac{2}{3}$.
n = 5
n + 1 = 6
$x=\frac{3}{5}, y=\frac{2}{3}$
$d=\frac{y-x}{n+1}=\frac{\frac{2}{3}-\frac{3}{5}}{6}=\frac{10-9}{90}=\frac{1}{90}$
Thus, rational numbers between $\frac{3}{5}$ and $\frac{2}{3}$ will be
$(x+d),(x+2 d),(x+3 d),(x+4 d),(x+5 d)$
$=\left(\frac{3}{5}+\frac{1}{90}\right),\left(\frac{3}{5}+\frac{2}{90}\right),\left(\frac{3}{5}+\frac{3}{90}\right),\left(\frac{3}{5}+\frac{4}{90}\right),\left(\frac{3}{5}+\frac{5}{90}\right)$
$=\left(\frac{55}{90}\right),\left(\frac{56}{90}\right),\left(\frac{57}{90}\right),\left(\frac{58}{90}\right),\left(\frac{59}{90}\right)$
$=\left(\frac{11}{18}\right),\left(\frac{28}{45}\right),\left(\frac{19}{30}\right),\left(\frac{29}{45}\right),\left(\frac{59}{90}\right)$