Question.
Find energy of each of the photons which
(i)correspond to light of frequency 3× 1015 Hz.
(ii)have wavelength of 0.50 Å. [/question
Find energy of each of the photons which
(i)correspond to light of frequency 3× 1015 Hz.
(ii)have wavelength of 0.50 Å. [/question
Solution:
(i) Energy $(E)$ of a photon is given by the expression,
$E=h v$
Where, $h=$ Planck's constant $=6.626 \times 10^{-34} \mathrm{Js}$
$v=$ frequency of light $=3 \times 10^{15} \mathrm{~Hz}$
Substituting the values in the given expression of $E$ :
$E=\left(6.626 \times 10^{-34}\right)\left(3 \times 10^{15}\right)$
$E=1.988 \times 10^{-18} \mathrm{~J}$
(ii) Energy $(E)$ of a photon having wavelength $(\lambda)$ is given by the expression,
$E=\frac{\text { hc }}{\lambda}$
$\mathrm{h}=$ Planck's constant $=6.626 \times 10^{-34} \mathrm{Js}$
$c=$ velocity of light in vacuum $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Substituting the values in the given expression of $E$ :
$E=\frac{\left(6.626 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{0.50 \times 10^{-10}}=3.976 \times 10^{-15} \mathrm{~J}$
$\therefore E=3.98 \times 10^{-15} \mathrm{~J}$
(i) Energy $(E)$ of a photon is given by the expression,
$E=h v$
Where, $h=$ Planck's constant $=6.626 \times 10^{-34} \mathrm{Js}$
$v=$ frequency of light $=3 \times 10^{15} \mathrm{~Hz}$
Substituting the values in the given expression of $E$ :
$E=\left(6.626 \times 10^{-34}\right)\left(3 \times 10^{15}\right)$
$E=1.988 \times 10^{-18} \mathrm{~J}$
(ii) Energy $(E)$ of a photon having wavelength $(\lambda)$ is given by the expression,
$E=\frac{\text { hc }}{\lambda}$
$\mathrm{h}=$ Planck's constant $=6.626 \times 10^{-34} \mathrm{Js}$
$c=$ velocity of light in vacuum $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Substituting the values in the given expression of $E$ :
$E=\frac{\left(6.626 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{0.50 \times 10^{-10}}=3.976 \times 10^{-15} \mathrm{~J}$
$\therefore E=3.98 \times 10^{-15} \mathrm{~J}$