Find each of the following products:
(i) (x + 6)(x + 6)
(ii) (4x + 5y)(4x + 5y)
(iii) (7a + 9b)(7a + 9b)
(iv) $\left(\frac{2}{3} x+\frac{4}{5} y\right)\left(\frac{2}{3} x+\frac{4}{5} y\right)$
(v) $\left(x^{2}+7\right)\left(x^{2}+7\right)$
(vi) $\left(\frac{5}{6} a^{2}+2\right)\left(\frac{5}{6} a^{2}+2\right)$
(i) We have:
$(x+6)(x+6)$
$=(x+6)^{2}$
$=x^{2}+6^{2}+2 \times x \times 6$ $\left[\right.$ using $\left.(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$=x^{2}+36+12 x$
(ii) We have:
$(4 x+5 y)(4 x+5 y)$
$=(4 x+5 y)^{2}$
$=(4 x)^{2}+(5 y)^{2}+2 \times 4 x \times 5 y$ $\left[\right.$ using $\left.(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$=16 x^{2}+25 y^{2}+40 x y$
(iii) We have:
$(7 a+9 b)(7 a+9 b)$
$=(7 a+9 b)^{2}$
$=(7 a)^{2}+(9 b)^{2}+2 \times 7 a \times 9 b$ $\left[\right.$ using $\left.(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$=49 a^{2}+81 b^{2}+126 a b$
(iv) We have:
$\left(\frac{2}{3} x+\frac{4}{5} y\right)\left(\frac{2}{3} x+\frac{4}{5} y\right)$
$=\left(\frac{2}{3} x+\frac{4}{5} y\right)^{2}$
$=\left(\frac{2}{3} x\right)^{2}+\left(\frac{4}{5} y\right)^{2}+2 \times \frac{2}{3} x \times \frac{4}{5} y$ $\left[\right.$ using $\left.(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$=\frac{4}{9} x^{2}+\frac{16}{25} y^{2}+\frac{16}{15} x y$
(v) $\left(x^{2}+7\right)\left(x^{2}+7\right)$
$=\left(x^{2}+7\right)^{2}$
$=\left(x^{2}\right)^{2}+7^{2}+2 \times x^{2} \times 7$ $\left[\right.$ using $\left.(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$=x^{4}+49+14 x^{2}$
(vi) We have:
$\left(\frac{5}{6} a^{2}+2\right)\left(\frac{5}{6} a^{2}+2\right)$
$=\left(\frac{5}{6} a^{2}+2\right)^{2}$
$=\left(\frac{5}{6} a^{2}\right)^{2}+(2)^{2}+2 \times \frac{5}{6} a^{2} \times 2$ $\left[\right.$ using $\left.(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$=\frac{25}{36} a^{4}+4+\frac{10}{3} a^{2}$