Question:
Find each of the following product:
$\left(-\frac{1}{27} a^{2} b^{2}\right) \times\left(\frac{9}{2} a^{3} b^{2} c^{2}\right)$
Solution:
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., $a^{m} \times a^{n}=a^{m+n}$.
We have:
$\left(-\frac{1}{27} a^{2} b^{2}\right) \times\left(\frac{9}{2} a^{3} b^{2} c^{2}\right)$
$=\left(-\frac{1}{27} \times \frac{9}{2}\right) \times\left(a^{2} \times a^{3}\right) \times\left(b^{2} \times b^{2}\right) \times c^{2}$
$=\left(-\frac{1}{27} \times \frac{9}{2}\right) \times\left(a^{2+3}\right) \times\left(b^{2+2}\right) \times c^{2}$
$=-\frac{1}{6} a^{5} b^{4} c^{2}$
Thus, the answer is $-\frac{1}{6} a^{5} b^{4} c^{2}$.