Find all the zeros of $2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$ if it is given that two of its zeros are 1 and $\frac{1}{2}$.
Let $f(x)=2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$
It is given that 1 and $\frac{1}{2}$ are two zeroes of $f(x)$.
Thus, $f(x)$ is completely divisible by $(x-1)$ and $\left(x-\frac{1}{2}\right)$.
Therefore, one factor of $f(x)$ is $(x-1)\left(x-\frac{1}{2}\right)$
$\Rightarrow$ one factor of $f(x)$ is $\left(x^{2}-\frac{3}{2} x+\frac{1}{2}\right)$
We get another factor of $f(x)$ by dividing it with $\left(x^{2}-\frac{3}{2} x+\frac{1}{2}\right)$.
On division, we get the quotient $2 x^{2}-4$
$\Rightarrow f(x)=\left(x^{2}-\frac{3}{2} x+\frac{1}{2}\right)\left(2 x^{2}-4\right)$
$=(x-1)\left(x-\frac{1}{2}\right)\left(2 x^{2}-4\right)$
To find the zeroes, we put $f(x)=0$
$\Rightarrow(x-1)\left(x-\frac{1}{2}\right)\left(2 x^{2}-4\right)=0$
$\Rightarrow(x-1)=0$ or $\left(x-\frac{1}{2}\right)=0$ or $\left(2 x^{2}-4\right)=0$
$\Rightarrow x=1, \frac{1}{2}, \pm \sqrt{2}$
Hence, all the zeroes of the polynomial $f(x)$ are $1, \frac{1}{2}, \sqrt{2}$ and $-\sqrt{2}$.