Find all points of discontinuity of f, where f is defined by
$f(x)=\left\{\begin{array}{l}x+1, \text { if } x \geq 1 \\ x^{2}+1, \text { if } x<1\end{array}\right.$
The given function $f$ is $f(x)=\left\{\begin{array}{l}x+1, \text { if } x \geq 1 \\ x^{2}+1, \text { if } x<1\end{array}\right.$
The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I:
If $c<1$, then $f(c)=c^{2}+1$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(x^{2}+1\right)=c^{2}+1$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x<1$
Case II:
If $c=1$, then $f(c)=f(1)=1+1=2$
The left hand limit of f at x = 1 is,
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}\left(x^{2}+1\right)=1^{2}+1=2$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(x+1)=1+1=2$
$\therefore \lim _{x \rightarrow 1} f(x)=f(1)$
Therefore, f is continuous at x = 1
Case III:
If $c>1$, then $f(c)=c+1$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(x+1)=c+1$
Therefore, $f$ is continuous at all points $x$, such that $x>1$
Hence, the given function f has no point of discontinuity.