Find acute angles $\mathrm{A}$ and $\mathrm{B}$, if $\sin (A+2 B)=\frac{\sqrt{3}}{2}$ and $\cos (A+4 B)=0, A>B$
Given:
$\sin (A+2 B)=\frac{\sqrt{3}}{2}$....(1)
$\cos (A+4 B)=0$....(2)
We know that,
$\sin 60^{\circ}=\frac{\sqrt{3}}{2}$....(3)
$\cos 90^{\circ}=0$....(4)
Now by comparing equation (1) and (3)
We get,
$A+2 B=60 \ldots \ldots(5)$
Now by comparing equation (2) and (4)
We get,
$A+4 B=90 \ldots \ldots(6)$
Now to get the values of A and B, let us solve equation (5) and (6) simultaneously
Therefore by subtracting equation (5) from (6)
We get,
Therefore,
$2 B=30$
$\Rightarrow B=\frac{30}{2}$
$\Rightarrow B=15^{\circ}$
Hence $B=15^{\circ}$
Now by multiplying equation (5) by 2
We get,
$2 A+2 \times 2 B=2 \times 60$
$2 A+4 B=120 \ldots \ldots(7)$
Now by subtracting equation (6) from (7)
We get,
Therefore,
$A=30$
Hence $A=30^{\circ}$
Therefore the values of $A$ and $B$ are as follows $A=30^{\circ}$ and $B=15^{\circ}$