Find $a_{30}-a_{20}$ for the A.P.
(i) $-9,-14,-19,-24, \ldots$
(ii) $a, a+d, a+2 d, a+3 d, \ldots$
In this problem, we are given different A.P. and we need to find $a_{30}-a_{20}$.
(i) A.P. $-9,-14,-19,-24, \ldots$
Here,
First term (a) = -9
Common difference of the A.P. $(d)=-14-(-9)$
$=-14+9$
$=-5$
Now, as we know,
$a_{n}=a+(n-1) d$
Here, we find $a_{30}$ and $a_{20}$
So, for $30^{\text {th }}$ term,
$a_{30}=a+(30-1) d$
$=-9+(29)(-5)$
$=-9-145$
$=-154$
Also, for $20^{\text {th }}$ term,
$a_{3}=a+(20-1) d$
$=-9+(19)(-5)$
$=-9-95$
$=-104$
So,
$a_{30}-a_{0}=-154-(-104)$
$=-154+104$
$=-50$
Therefore, for the given A.P $a_{30}-a_{20}=-50$
(ii) A.P. $a, a+d, a+2 d, a+3 d, \ldots$
Here,
First term $(a)=a$
Common difference of the A.P. $(d)=a+d-a=d$
Now, as we know,
$a_{n}=a+(n-1) d$
Here, we find $a_{30}$ and $a_{20}$.
So, for $30^{\text {th }}$ term,
$a_{30}=a+(30-1) d$
$=a+(29) d$
Also, for 20th term,
$a_{20}=a+(20-1) d$
$=a+(19) d$
So,
$a_{30}-a_{20}=(a+29 d)-(a+19 d)$
$=a+29 d-a-19 d$
$=10 d$
Therefore, for the given A.P $a_{30}-a_{20}=10 d$