Find a point on the curve $y^{2}=2 x^{3}$ at which the Slope of the tangent is 3
Given:
The curve $y^{2}=2 x^{3}$ and The Slope of tangent is 3
$y^{2}=2 x^{3}$
Differentiating the above w.r.t $x$
$\Rightarrow 2 y^{2}-1 \times \frac{d y}{d x}=2 \times 3 x^{3-1}$
$\Rightarrow y \frac{d y}{d x}=3 x^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{3 x^{2}}{y}$
Since, The Slope of tangent is 3
$\frac{3 x^{2}}{y}=3$
$\Rightarrow \frac{x^{2}}{y}=1$
$\Rightarrow x^{2}=y$
Substituting $x^{2}=y$ in $y^{2}=2 x^{3}$
$\left(x^{2}\right)^{2}=2 x^{3}$
$x^{4}-2 x^{3}=0$
$x^{3}(x-2)=0$
$x^{3}=0$ or $(x-2)=0$
$x=0$ or $x=2$
If $x=0$
$\Rightarrow \frac{d y}{d x}=\frac{3(0)^{2}}{y}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathbf{0}$, which is not possible.
So we take $x=2$ and substitute it in $y^{2}=2 x^{3}$, we get
$y^{2}=2(2)^{3}$
$y^{2}=2 \times 8$
$y^{2}=16$
$y=4$
Thus, the required point is $(2,4)$