Find a particular solution of the differential equation $(x-y)(d x+d y)=d x-d y$, given that $y=-1$, when $x=0$ (Hint: put $x-y=t$ )
$(x-y)(d x+d y)=d x-d y$
$\Rightarrow(x-y+1) d y=(1-x+y) d x$
$\Rightarrow \frac{d y}{d x}=\frac{1-x+y}{x-y+1}$
$\Rightarrow \frac{d y}{d x}=\frac{1-(x-y)}{1+(x-y)}$ ...(1)
Let $x-y=t$.
$\Rightarrow \frac{d}{d x}(x-y)=\frac{d t}{d x}$
$\Rightarrow 1-\frac{d y}{d x}=\frac{d t}{d x}$
$\Rightarrow 1-\frac{d t}{d x}=\frac{d y}{d x}$
Substituting the values of $x-y$ and $\frac{d y}{d x}$ in equation (1), we get:
$1-\frac{d t}{d x}=\frac{1-t}{1+t}$
$\Rightarrow \frac{d t}{d x}=1-\left(\frac{1-t}{1+t}\right)$
$\Rightarrow \frac{d t}{d x}=\frac{(1+t)-(1-t)}{1+t}$
$\Rightarrow \frac{d t}{d x}=\frac{2 t}{1+t}$
$\Rightarrow\left(\frac{1+t}{t}\right) d t=2 d x$
$\Rightarrow\left(1+\frac{1}{t}\right) d t=2 d x$ ...(2)
Integrating both sides, we get:
$t+\log |t|=2 x+\mathrm{C}$
$\Rightarrow(x-y)+\log |x-y|=2 x+\mathrm{C}$
$\Rightarrow \log |x-y|=x+y+\mathrm{C}$ ...(3)
Now, $y=-1$ at $x=0$
Therefore, equation (3) becomes:
$\log 1=0-1+C$
$\Rightarrow C=1$
Substituting C = 1 in equation (3) we get:
This is the required particular solution of the given differential equation.