Question:
Find a cubic polynomial whose zeroes are 2, −3 and 4
Solution:
If the zeroes of the cubic polynomial are a, b and c then the cubic polynomial can be found as
$x^{3}-(a+b+c) x^{2}+(a b+b c+c a) x-a b c$ ...........(1)
Let $a=2, b=-3$ and $c=4$
Substituting the values in (1), we get
$x^{3}-(2-3+4) x^{2}+(-6-12+8) x-(-24)$
$\Rightarrow x^{3}-3 x^{2}-10 x+24$