Find a cubic polynomial whose zeroes are 2, −3 and 4

Question:

Find a cubic polynomial whose zeroes are 2, −3 and 4

 

Solution:

If the zeroes of the cubic polynomial are ab and c then the cubic polynomial can be found as

$x^{3}-(a+b+c) x^{2}+(a b+b c+c a) x-a b c$     ...........(1)

Let $a=2, b=-3$ and $c=4$

Substituting the values in (1), we get

$x^{3}-(2-3+4) x^{2}+(-6-12+8) x-(-24)$

$\Rightarrow x^{3}-3 x^{2}-10 x+24$

 

Leave a comment