Find a 2 × 2 matrix A such that
$A\left[\begin{array}{rr}1 & -2 \\ 1 & 4\end{array}\right]=6 I_{2}$
Let $\mathrm{A}=\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]$
Now,
$\left[\begin{array}{cc}w & x \\ y & z\end{array}\right]\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]=6 I_{2}$
$\Rightarrow\left[\begin{array}{ll}w+x & -2 w+4 x \\ y+z & -2 y+4 z\end{array}\right]=6\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}w+x & -2 w+4 x \\ y+z & -2 y+4 z\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$
The corresponding elements of two equal matrices are equal.
$\therefore w+x=6$
$\Rightarrow w=6-x$ ...(1)
$-2 w+4 x=0$ ...(2)
Putting the value of $w$ in $e q .$ (2), we get
$-2(6-x)+4 x=0$
$\Rightarrow-12+2 x+4 x=0$
$\Rightarrow-12+6 x=0$
$\Rightarrow 6 x=12$
$\Rightarrow x=2$
Putting the value of $x$ in eq. $(1)$, we get
$w=6-2$
$\Rightarrow w=4$
Now,
$y+z=0$
$\Rightarrow y=-z$ ...(3)
$-2 y+4 z=6$ ...(4)
Putting the value of $y$ in eq. (4), we get
$-2(-z)+4 z=6$
$\Rightarrow 2 z+4 z=6$
$\Rightarrow 6 z=6$
$\Rightarrow z=1$
Putting the value of $z$ in eq. (3), we get
$y=-1$
$\therefore A=\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$