Question:
Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12$.
Solution:
$(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12$
$\Rightarrow \vec{x} \cdot \vec{x}+\vec{x} \cdot \vec{a}-\vec{a} \cdot \vec{x}-\bar{a} \cdot \vec{a}=12$
$\Rightarrow|\vec{x}|^{2}-|\vec{a}|^{2}=12$
$\Rightarrow|\vec{x}|^{2}-1=12 \quad[|\vec{a}|=1$ as $\vec{a}$ is a unit vector $]$
$\Rightarrow|\vec{x}|^{2}=13$
$\therefore|\vec{x}|=\sqrt{13}$