Find:
(i) $10^{\text {th }}$ term of the A.P. $1,4,7,10, \ldots$
(ii) $18^{\text {th }}$ term of the A.P. $\sqrt{2}, 3 \sqrt{2}, 5 \sqrt{2} \ldots$
(iii) $n^{\text {th }}$ term of the A.P. $13,8,3,-2, \ldots$
(iv) $10^{\text {th }}$ term of the A.P. $-40,-15,10,35, \ldots$
(v) 8th term of the A.P. 117, 104, 91, 78,...
(vi) 11 th term of the A.P. $10.0,10.5,11.0,11.5, \ldots$
(vii) 9 th term of the A.P. $\frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \frac{9}{4}, \ldots$
In this problem, we are given different A.P. and we need to find the required term of that A.P.
(i) $10^{\text {th }}$ term of the A.P. $1,4,7,10, \ldots$
Here,
First term (a) = 1
Common difference of the A.P. $(d)=4-1$
$=3$
Now, as we know,
$a_{w}=a+(n-1) d$
So, for $10^{\text {th }}$ term,
$a_{10}=a+(10-1) d$
$=1+(9)^{3}$
$=1+27$
$=28$
Therefore, the $10^{\text {th }}$ term of the given A.P. is $a_{10}=28$.
(ii) $18^{\text {th }}$ term of the A.P. $\sqrt{2}, 3 \sqrt{2}, 5 \sqrt{2}, \ldots$
Here,
First term $(a)=\sqrt{2}$
Common difference of the A.P. $(d)=3 \sqrt{2}-\sqrt{2}$
$=2 \sqrt{2}$
Now, as we know,
$a_{n}=a+(n-1) d$
So, for $18^{\text {th }}$ term,
$a_{18}=a+(18-1) d$
$=\sqrt{2}+(17) 2 \sqrt{2}$
$=\sqrt{2}+34 \sqrt{2}$
$=35 \sqrt{2}$
Therefore, the $18^{\text {th }}$ term of the given A.P. is $a_{18}=35 \sqrt{2}$.
(iii) $n^{\text {th }}$ term of the A.P. $13,8,3,-2, \ldots$
Here,
First term (a) = 13
Common difference of the A.P. (d)
Now, as we know,
$a_{n}=a+(n-1) d$
So, for $n^{\text {th }}$ term,
$a_{n}=a+(n-1) d$
$=13+(n-1)(-5)$
$=13+(-5 n+5)$
$=13-5 n+5$
$=18-5 n$
Therefore, the $n^{\text {th }}$ term of the given A.P. is $a_{n}=18-5 n$.
(iv) $10^{\text {th }}$ term of the A.P. $-40,-15,10,35, \ldots$
Here,
First term $(a)=-40$
Common difference of the A.P. $(d)=-15-(-40)$
$=-15+40$
$=25$
Now, as we know,
$a_{e}=a+(n-1) d$
So, for $10^{\text {th }}$ term,
$a_{10}=a+(10-1) d$
$=-40+(9) 25$
$=-40+225$
$=185$
Therefore, the $10^{\text {th }}$ term of the given A.P. is $a_{10}=185$.
(v) $8^{\text {th }}$ term of the A.P. $117,104,91,78 \ldots$
Here,
First term (a) = 117
Common difference of the A.P. $(d)=104-117$
$=-13$
Now, as we know,
$a_{n}=a+(n-1) d$
So, for $8^{\text {th }}$ term,
$a_{8}=a+(8-1) d$
$=117+(7)(-13)$
$=117-91$
$=26$
Therefore, the $8^{\text {th }}$ term of the given A.P. is $a_{x}=26$.
(vi) $11^{\text {th }}$ term of the A.P. $10.0,10.5,11.0,11.5, \ldots$
Here,
First term (a) = 10.0
Common difference of the A.P. $(d)=10.5-10.0$
$=0.5$
Now, as we know,
$a_{n}=a+(n-1) d$
So, for $11^{\text {th }}$ term,
$a_{11}=a+(11-1) d$
$=10.0+(10)(0.5)$
$=10.0-5.0$
$=15.0$
Therefore, the $11^{\text {th }}$ term of the given A.P. is $a_{11}=15.0$.
(vii) $9^{\text {th }}$ term of the A.P. $\frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \frac{9}{4}, \ldots$
Here,
First term $(a)=\frac{3}{4}$
Common difference of the A.P. $(d)=\frac{5}{4}-\frac{3}{4}$
$=\frac{5-3}{4}$
$=\frac{2}{4}$
Now, as we know,
$a_{n}=a+(n-1) d$
So, for $9^{\text {th }}$ term,
$a_{9}=a+(9-1) d$
$=\frac{3}{4}+(8)\left(\frac{2}{4}\right)$
$=\frac{3}{4}+\frac{16}{4}$
$=\frac{19}{4}$
Therefore, the $9^{\text {th }}$ term of the given A.P. is $a_{9}=\frac{19}{4}$.